
Gender Representation and Opinion Detection in the Media
Team Members: Jade Clarke, Lia Chin-Purcell, Kailin Koch, George McIntire, Siqi Wu
Advisor: Professor David Bamman
Organization Partner: Rethink Media

Table of Contents

Gender Representation and Opinion Detection in the Media 1
Summary 2
Helpful Links 2
Motivation - Current Female Representation in the Media 2
Motivation - Building the Models and Dashboard 3
Requirements 4
Background Research 4
Analysis 4
Natural Language Processing Models 5

Opinion Classification 5
Goals 5
Evaluation 6

Quote Extraction and Attribution 7
Goals 7
Evaluation 8

Gender Inference 9
Goals 9
Evaluation 9

Potential Future Work 10
Data Engineering 10

Goals 10
Approach 10
Design 11

Data Cleaning 11
Running Models in AWS 11
Running Models Locally 11
Saving Results 12
Manual Review 12
Updating Dashboard Data 12

Operationalizing The Design 12
Integrations 12

1

Managing Costs 13
Managing Performance Issues 13

Reflections 13
Potential Future Work 14

UX Design and Research 14
Overall Goals 14
Stakeholder Interviews 14

Findings 15
Usability Tests 15

Findings 16
Dashboard Creation 17

Appendix 20
MongoDB Rules from Documentation 20

Summary
We built a dashboard for ReThink Media, a local Berkeley nonprofit, to help them visualize
gender representation through news articles in their various issue areas. This builds off of
previous work such as Informed Opinion’s Gender Gap Tracker and the Global Media
Monitoring Project’s Who Makes the News Report. As part of this project we productionized the
models, built a data pipeline, performed usability testing, and documented and handed off our
work to the organization.

Helpful Links
● Github Repository
● Dashboard
● Project Page
● Website
● Documentation

Motivation - Current Female Representation in the Media
The Global Media Monitoring Project’ Who Makes the News report found that as of 2020 in the
120 countries that were researched, the number of female news sources and subjects were
24% in newspapers, 24% in radio news, 26% in TV news. On the internet, the number of female
news sources and subjects was 27% in 2020.

2

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245533
https://whomakesthenews.org/
https://github.com/gjkls-mims/pipeline
https://datastudio.google.com/reporting/97f025af-b3a9-4587-a514-351d500cd990
https://www.ischool.berkeley.edu/projects/2022/gender-representation-and-opinion-detection-media
https://gjkls-mims.github.io/capstone-website/
https://docs.google.com/document/d/1wjQhlOoj_lEqsnQIgwl8UGwqOZKjfsZBGHucBrgi5Jo/edit?usp=sharing
https://whomakesthenews.org/wp-content/uploads/2021/07/GMMP2020.ENG_.FINAL20210713.pdf

After COVID-19, news consumption shot up all over the world as society experienced their first
global pandemic in almost a century. A new perspective on “news avoidance” emerged as the
public had to be updated almost by the minute on crucial public health information, which has
forever impacted the way we consume media. Outlets and social media platforms saw record
numbers of new subscribers, and journalists were forced to be on the front lines more than ever.
What still hasn’t changed is the gender disparity in news sourcing and voiceshare. Women now
make up almost 50% of the workforce and still are marginally represented as reporting sources
regardless of topic and geographic location. In the last 25 years, female representation has
remained modest mostly due to awareness. Not enough people know this discrepancy even
exists, forcing organizations like the Global Media Monitoring Project and ReThink Media to lead
the fight to promote greater gender equality in voiceshare. By working with independent
journalists and large omni-channel media outlets to alert them of this unequal balance, media
will be forced to gradually make conscious efforts to include more women as their sources. We
as a team hope to play a small part in helping ReThink Media acquire tools and resources to
further their mission.

Motivation - Building the Models and Dashboard
Currently, ReThink media has a database of news articles that need to be manually classified as
news/opinion articles. Additionally, people need to manually extract and attribute all quotes in
the article. While there are existing tools available, they needed to be trained and tailored
specifically on this news dataset. Additionally, typically these very technically involved and
resource intensive processes. We set out to automate these steps in a simple, reproducible
process.

3

Requirements
Below are some basic requirements for our final deliverable dashboard

● Publicly available dashboard displaying the rates of representation in the news by issue
area over time.

○ MVP: nuclear issue area only
● Classify articles as news vs opinion programmatically rather than by hand
● Extract quotes and speakers programmatically, replacing the current manual process
● Connect to existing gender inference pipeline
● Manually review data ahead of publishing new data
● Easily update model logic and troubleshoot

Background Research
To begin, we conducted 2 literature reviews. The first focused on existing methods for news
article classification, gender classification and quote extraction. This document can be found
here. Secondly, we surveyed research about how women are represented in the news media,
including both their characterization and the substance of their coverage. This document can be
found here. In addition, we researched a number of publicly available tools we could leverage
for this project, including github pages, Google Data Studio, Tableau Public and Amazon Web
Services. Lastly, we spoke with the client extensively about their existing tooling and reached
out to a former iSchool capstone team to understand why they had chosen specific tools.

We also explored ReThink Media’s existing data for this project. Below is a summary of the data
files ReThink already has for news articles. Our MVP launch focuses on data in GNI88.csv,
which focus on nuclear issues.

Analysis

After building our NLP pipeline, we used it to process over 60,000 articles. Given the wealth of
data derived from the corpus using our tools we analyzed the data to search insightful patterns
illuminating how men and women are quoted in this particular section of the media.

Some of our findings include:
● Around 75% of news articles do not quote a single woman.
● The ratio of male quotes to female is 8:1
● 15% of journalists with at least 5 articles quote zero women.

4

https://drive.google.com/file/d/1mHI5AUKhl7ncJHg08GXvQBgLR7tcMuMB/view?usp=sharing
https://drive.google.com/file/d/15iQFF2ARYJKuv7xuRMT3RlyX-TDzrg25/view?usp=sharing

● Average article has 3.68 quoted men vs 0.8 quoted women.
● We found this ratio to be consistent when analyzing different groups of outlets i.e. local

vs national and magazine vs newspaper vs radio vs online.
● Outlets with the highest rates of female quoting typically had about 20% of their quotes

come from women.
● We detected no significant difference in the length and content of quotes from men and

women.
○ Both uses 18 words on average in their quotes
○ Using topic modeling, we observed little in the topics scores when grouping by

gender.
● The rate of female quotes has stayed consistent over the years, see the following chart.

Natural Language Processing Models
Owners: Lia Chin-Purcell & George McIntire

Opinion Classification

Goals

● Classify the incoming flow of news articles as either “opinion” or “news.”
● Serves purpose ensuring the ensuing models are applied to “news” articles.
● This is the first step in the modeling process, the articles classified as “news” will then be

passed onto the next step in the modeling process.

5

We used a corpus of 6342 news articles provided to us by ReThink pre-labeled as
“Opinion” or “News” — the two classes are of approximately equal proportions. The opinion
classifier is an ensemble model comprised of a MLP neural network trained on the sentence
embeddings derived using the paraphrase-MiniLM-L6-v2 model and a DistilBert base cased
model fine-tuned on our corpus. Our only preprocessing step involves using the python package
Texthero to clean the raw article text.

The opinion classification process follows these steps:

1. If an article happens contains phrases or words such as “Opinion”, “OP-ED”, or
“Editorial” then it is automatically classified as opinion.

2. Pass the raw text into the Texthero text cleaning pipeline.
3.

a. Derive sentence embeddings from the processed text.
b. Tokenize processed text using the Distilbert’s tokenizer.

4.
a. Use each model to derive the probability of opinion.
b. Average the two probabilities and if that value is greater than 0.5 or a desired

threshold then classify article as opinion or otherwise send article onto the quote
extraction and gender inference step.

Evaluation

After an exhaustive process that involved testing and experimenting a variety of text
classification and processing methodologies, our method listed above produced the best overall
results.

The following displays the performance of our modeling on the validation data using a threshold
of 0.5

Our model’s performance indicates that our methodology can be expected to correctly classify
93% of opinion articles as opinion and 92% of news articles as news.

Setting a threshold for opinion classification has been a recurring topic for discussion and we’ve
not settled on a precise value. It may be recommended to choose a lower threshold in the range

6

https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://texthero.org/docs/getting-started#preprocessing

of 30-45% in order to filter out an increased number of opinion articles while still retaining almost
90% of news articles. We did analyze the relationship between model performance and various
thresholds. The following plot displays validation scores for accuracy, recall, precision, and f1 for
a range of thresholds from 0.0 to 1.0 — opinion is considered the positive class in this example.

Quote Extraction and Attribution

Goals

● Extract quotations in news article text. Specifically, for each direct and indirect quotation
in an article, identify the quote content, the verb cue, and the speaker

● Evaluate the degree to which the model is able to extract all of the quotations present in
an article, and how many the model is falsely identifying as a quotation. I.e. evaluate the
accuracy, precision and recall of the model

The quote extraction model takes in a document, or the text body of an article, and
returns a list of the direct and indirect quotations that appear in the article. For each quotation
found in the article, the quote extraction model identifies the quote itself, the speaker of the
quote, and the verb cue (the verb indicating that a quotation is there such as “says”, “said” etc).
For example, from the follow piece of text:

Russia quietly boosted economic support for North Korea this year, and last
week Russian Deputy Foreign Minister Igor Morgulov said Moscow was not
ready to sign up to sanctions that would strangle the country economically.

7

The quote text is “Moscow was not ready to sign up to sanctions that would strangle the country
economically.”, the speaker is “Russian Deputy Foreign Minister Igor Morgulov”, and the verb
cue is “said”.

We use and build upon Toriabi Asr et al.’s quote extraction model that powers The
Gender Gap Tracker dashboard. In this model, we use the spaCy library to parse text and
identify linguistic features of the text, in particular the syntactic structure of sentences. By
identifying the part of speech of different words and their linguistic dependencies, the model
identifies potential quotes by checking if the verb cue is in a list of potential verb cues, and if so,
extracts the corresponding quote and speaker. Within this general method, there are several
functions in the model: one that extracts syntactic quotes like the one mentioned above, and
one that extracts floating quotes, and a heuristic method that extracts syntactic quotes that are
missed. An example of a floating quote is found below:

“Honestly, it feels like we’re living our worst nightmare right now” Kim told CTV
News Friday. “The fact that we are being accused right now of an unethical
adoption is crazy.”

Here, as readers we know that the second quote “The fact that we are being accused right now
of an unethical adoption is crazy.” the speaker is also Kim, which the model is able to capture
with an additional function.

The model also extracts heuristic quotes, or quotes that are enclosed between start and end
quotation marks. The model then identifies the speaker of the quote by identifying the closest
subject associated with the verb cue with the linguistic dependencies identified by the spaCy
model.

Evaluation

For evaluation, we hand-annotated 20 articles for their quotations. To measure the accuracy,
precision and recall of the model, we use the same method as Toriabi Asr et al. and identify that
the model has extracted the “same” quote that a person has annotated based on a threshold of
overlap. This threshold can either be specified based on the indices of the characters within the
article body, or as a fuzzy matching ratio threshold.

For the fuzzy matching threshold, we use the fuzzywuzzy package to calculate the Levenshtein
distance ratio of similarity between two quotations. At a 60% ratio threshold, we obtain the
following metrics:

Precision 69.0%

Recall 77.0%

F1 score 72.8%

8

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245533

These were our final metrics after iterating on the algorithm several times, including adjustment
to thresholds, stop-word lists, and data pre-processing.

Gender Inference

Goals

● Cluster the ‘person’ entities in each article through coreference resolution, and associate
quotations with entities

● Infer the gender of person entities, so we can determine quotes spoken by men and
quotes spoken by women

To identify the person entities in the article and their names, we use named entity recognition
and coreference resolution functionality provided by spaCy. To use this functionality, we add a
neural coreference model to the spaCy pipeline. This coreference model works well with our
purposes and model, but there are more sophisticated models that could be used for this task in
the future.

After identifying the entities and coerferring them to each other, we filter on speakers who have
been identified with the ‘person’ entity, and extract the name from the coreferring cluster. After
extracting the names of the speakers who are people entities in an article, we pass the names
to our gender inference model, which is essentially a series of calls to various gender inference
APIs.

The first step of the model is to check if the name and its corresponding gender appears in our
database of cached names. The cached names come from previous API calls. If the name does
not appear in the database, we then get the gender from the library gender guesser. This library
tends to give a lot of ‘unknown’ and ‘andy’ (indicating androgynous), in which case we then
make an api call to gender api. If gender api also gives unknown, we then make an api call to
genderize. If the name is still unknown at this point, we infer the gender as ‘unknown’.

Once we have inferred gender for all of the speakers of the articles, we can then associate each
quote spoken by a person to the name of the speaker and their inferred gender. It is important to
note that currently, the model relies on various calls to gender APIs, which, particularly for the
gender guesser model, are typically trained on predominantly western names, and is thus less
accurate for non-western names. However, GenderAPI performs well on non-western names,
with an accuracy drop-off of only around 1-2% for non-European names. Depending on which
API is called, this bias would be more or less prevalent. This is an area of unfairness in the
model. Another area of unfairness is that the model currently only outputs woman, woman and
unknown, which does not capture the nuance of gender as mutable and non-binary.

9

Evaluation

To evaluate the coreference resolution, we evaluated hand-annotated names of speakers from
all of the quotations in an article, against the extracted speakers from our model. This method
uses fuzzy matching to ensure a name match, and gives accuracy, precision and recall metrics.

To evaluate the accuracy of the gender inference we relied on the accuracy reporting already
completed by ReThink media for gender inference. This involves using gold data for speaker
names and their genders which was compiled using online databases, and standard measures
of accuracy, recall and precision for a binary classification task. On the GNI88 dataset, the
GenderAPI model is 95.7% accurate with unknowns, and 96.2% accurate without unknowns.

Potential Future Work
As touched on above, one area of future work for the entity resolution and gender inference step
is to incorporate a more sophisticated model for the coreference resolution. Specifically,
AllenNLP has an end-to-end coreference model that could be used for this task. Additionally, we
could use pronouns within a coreferring cluster to infer gender for those who use
they/them/theirs pronouns.

Additionally, The Gender Gap Tracker’s codebase also includes the possibility to capture and
infer the gender of the author of the article, so incorporating inferring the gender of the author
into the modeling would be a natural next step. Since the author name is already included on
the quote level, inferring their gender would simply imply passing it to the gender inference
function, and including their gender as a new field.

Data Engineering
Owners: Siqi Wu & Kailin Koch

Goals
The overarching goals of this design were as follows:

● Consolidate tooling as much as possible to tools the organization is familiar with and
uses currently

● Automate as much of the pipeline as possible to make it easy to run and maintain
● Utilize low cost and free services wherever possible, given we are designing for a

non-profit organization with limited resources
● Make it easy for the team to update the preprocessing and model code without having to

make changes to the data pipeline
● Connect the entire pipeline from data ingestion to local display

Approach
Given our design goals, we opted to build this pipeline using Amazon Web Services (AWS),
MongoDB, and Google Data Studio. All three tools are currently in use by the organization

10

https://arxiv.org/pdf/1707.07045.pdf

today, are easy to update and maintain, and are free or low cost. Within AWS, we experimented
with different services and landed on services that could be both relatively low costs and provide
enough computation power. We considered using Tableau Public in lieu of Google Data Studio,
but it offered fewer permissioning options and would’ve been an additional tool many
stakeholders had less experience with. With all these tools, we automate the process as much
as possible so our clients could use the pipeline without knowledge in building docker images or
writing command lines.

Design
A diagram of our current data pipeline is below.

Data Cleaning

Before running the models on the data, we cleaned up the scraped articles by removing some
metadata from the article body. To limit the amount of data we need to run the models on, we
check whether we’ve already classified each article prior to running the pipeline. This way the
pipeline only checks new articles.

Running Models in AWS

Given the time and size of the models, we built a system on AWS so that the client could run the
models without worrying about needing to monitor it too carefully. After manually triggering the
job in AWS, a lambda function will start an EC2 instance. On this EC2 instance, we will run the
pipeline code. This includes getting new articles, cleaning, running the models and saving the
results. Once this process is complete, the lambda function will shut off the instance again.

11

Running Models Locally

Because AWS can be costly and more technically involved, we also ensured the pipeline could
be run successfully locally and included extensive documentation about how this could be
accomplished. The client can clone the github repository, build a docker image and run it on
their local machine. While slow and memory intensive, it provides a workable alternative to
AWS.

Saving Results

Results are saved to a MongoDB database. From here, the team can run data validations,
aggregate the collected quotes and articles, and export the results. MongoDB also has a simple
GUI called MongoDB Compass, so it’s easy to connect locally and interact with the collections.
The client is familiar with MongoDB.

Throughout this project we often wrestled large amounts of data and free services with storage
limits. This was especially true with MongoDB, which has a limit of 512MB for its free services.
To be as space efficient as possible, we saved articles and quotes as 2 separate collections.
This way, we didn’t have duplicative information about the articles for each quote. The two
collections could be easily joined (or in MongoDB speak $lookup) together on an article_id key.

Manual Review

We created 4 data aggregations in MongoDB so the client could manually review any
classifications that we had less confidence in. The aggregations find articles that have not yet
been reviewed that meet a certain criteria, export these results to a small collection to be
reviewed, and then combine the results. We also do some light data cleaning ahead of
displaying the results in the dashboard. (See Appendix for full list of rules)

Updating Dashboard Data

Once the manual review is complete, the data can be downloaded and loaded into Google Data
Studio. Given the limitations of file sizes allowed as CSVs or Google Sheets, we limit the
imported data to only the relevant information displayed in the report. We also build a pivot table
in Google Sheets to power the ‘comparison of voiceshare’ chart on page 4 of the report.

Operationalizing The Design

Integrations

● Storing Models - the models are saved in Github and Google Drive. They are pre
trained and called in the code.

● Getting New Data - to avoid duplicative work, we perform a check on the articles in the
S3 bucket to only clean and classify the new articles.

● Saving to MongoDB - after the results are run, they are saved in a MongoDB database.
This makes it easy for the client to review the results, run data validations and
aggregations.

12

● Automating Building Docker Image (Github > AWS) - we created a GitHub action
which automatically uploads a new Docker Image to the AWS repository every time new
code is pushed in the github repository. This saves the client the hassle of making sure
the Github repository and AWS account stay in sync with the same DockerFile and
image.

Managing Costs

● Budget Alerts - there are multiple alerts tied to AWS spending to ensure the client has
no surprise charges. These alerts go to multiple members of the organization and to
position specific emails, to ensure they reach their intended recipient even if specific
individuals change roles.

● Budget Actions - after the budget alert has been reached, we have configured a budget
action in AWS which will shut down the EC2 instances without needing human
intervention. This will prevent the EC2 from racking up additional charges. However, this
alert must be tied to specific EC2 instances, and so it must be updated if a new EC2
instance is created. This is documented in the client documentation.

● Lifecycle Policy - to ensure that we don’t unnecessarily store old docker images in
AWS, we’ve implemented a lifecycle policy on the repository. It will only keep the newest
image in the repository.

Managing Performance Issues

● Running the Models - If there are large amounts of new articles to process, the model
will take a long time to finish. To track if the model is still running, we built in a logging
mechanism where a status log will be written into a text file after each step (i.e. data
cleaning, opinion classification, and gender identification). This text file will be uploaded
to S3 immediately after each update. As such, users can download the log from S3 and
check in the status of the pipeline.

● MongoDB - We stored the results as two separate tables to avoid storing duplicative
information. Thus we had an articles table and a quotes table, and the quotes could be
joined to the articles. This sped up the queries of both and it was trivial to join them
together.

● Google Data Studio - To avoid lagginess in the dashboard, we created a data extract
which makes a local copy of the data to avoid a live connection. This extract updates
automatically from the source every day.

Reflections
How well did we achieve our objectives?
What unforeseen obstacles did we hit and how did we overcome them?

Overall, we accomplished what we set out to achieve with the data pipeline. We underestimated
how long it would take to run the gender inference pipeline and how much the size of the data
would impact our pipeline. For example, we hit the data limits in the MongoDB free tier and the
maximum size of a Google Sheet. As such we had to adjust how we organized the data. For
example, we stored the data as two separate tables, one which contained the article

13

classification and the other which contained the quote and gender classification. That way, we
didn’t have to save duplicative copies of the article for each quote and could instead join the
quotes on the article ID.

Potential Future Work
For future iterations of the pipeline, we think the opportunity areas are improving latency and
making the github repository more secure. Currently, running the full pipeline on the decade of
news articles takes multiple days and costs a few hundred dollars to run. Running the models
more quickly will decrease iteration speed and allow for more improvements to the models. 2
approaches to try are parallelization and AWS Batch. AWS Batch has been found to run faster
than EC2 for some customers and is specifically built for training and running ML models.
Optimizing the quote extraction and gender inference models might also help speed up this
stage of the pipeline. Additionally, splitting up the manual review in 2 and reviewing the news
classification and then only running the quote extraction on the news articles, not opinion would
mean less data and thus less time. However, this might be more of a headache for the users.

Currently, the GitHub repository contains the access information for the AWS account in a
password protected CSV file. It would be good to eventually move this to a github secret or
another more secure solution, particularly before this repository is made public.

UX Design and Research
Owner: Jade Clarke

Overall Goals

The overall goals for this project in terms of UX and Design were as follows:
● Become an advocate for the end user: ReThink Media employees
● Conduct research to understand major pain points and functionalities
● Design the dashboard to include optimal functionality
● Conduct usability studies to test the user friendliness and usability of the dashboard

Stakeholder Interviews

Stakeholders are people who have stakes in the project. They are people who make decisions
regarding a UX design project. The stakeholders are the owners of the product and can range
from founders, executives to project managers. In this project, our stakeholders are ReThink
Senior Leadership, Program Managers and Research Analysts. And hence a stakeholder
interview is a consequential step that can't be avoided.

I began by utilizing our ReThink contact to connect me with employees who she believed would
be the most valuable to gain insights from on what the dashboard should accomplish for the
company. After compiling a list of interview goals, I created an interview protocol covering eight
topics ranging from project vision, business goals, users, proposed functionality and
technological limitations.

14

I conducted 4 stakeholder interviews over a two week period, each lasting 45 minutes to an
hour. After conducting the interviews, I compiled all the findings into reports and presented
them to my capstone team and Laura Nixon. Using these findings, I was able to
compartmentalize what the dashboard should be able to do which in turn informed my usability
studies and the aesthetics of the dashboard.

Findings

Some major highlights synthesized from the stakeholder interviews:
1. The dashboard should be able to be shared with partner organizations
2. The dashboard should have variability in sharing and viewing capabilities
3. Data sensitivity should be a main priority
4. Dashboard should be easy to maintain and update should new data come in
5. Dashboard should provide a robust landscape of the current female voiceshare in US

News and Media
6. Dashboard needs to come with documentation for the purposes of troubleshooting and

continuity after the team graduates

Metrics to be included:
● Breakdown of quotes by news source
● Breakdown by topic
● Volume data over time
● Ability to layer in gender breakdown and news outlet
● Filter by name
● Filter by outlet
● Filter by unique identifier
● Filter by total volume
● Being able to create charts (line graphs + bar charts) and export them as images
● Show percentages in relevant areas
● Have annotations
● Creating visualizations such as charts

Usability Tests

What is usability testing?
Usability testing is a method of evaluating a website's or app’s readiness for release by testing it
with real users who are part of the target audience. In our case, we are evaluating the
dashboard. Usability tests evaluate the overall user experience by measuring the relative ease
with which end users can accomplish a set of tasks that a typical user of the dashboard would
need to accomplish.

Why is it important?
The goal of usability testing is to understand how real users interact with our dashboard and
make changes based on the results. It is important to be sure that the dashboard is easy to

15

navigate and that tasks can be completed with ease to meet the needs of ReThink employees
like you.

I conducted usability studies over the month of April to test the functionality of the dashboard. I
wanted to get a range of technical and non-technical ReThink employees. To reflect the
average user of the dashboard, employees who work with data and who do not are both equally
important as all employees at ReThink will have use for this dashboard. I conducted two rounds
of usability tests with four participants in order to gain more breath on how user friendly the
dashboard should be. It is more valuable to conduct multiple rounds with a smaller population
than conducting one round with a larger population in order to maintain continuity. An interview
protocol was written that included goals, optimal user profiles and scenarios and tasks that
reflect a day to day life of a ReThink employee.

In each usability study, participants conducted at least four tasks virtually over zoom testing
various functionalities that were informed by the stakeholder interviews. The interviews were
conducted over zoom with the participants sharing their screen with the moderator to complete
the tasks. The dashboard was being tested with a small subset of the full data in order to
streamline time limitations. Tasks ranged from utilizing certain filters to populate visualizations,
exporting documents from the dashboard, and interpreting data. After the first round, major
concerns were taken to the team to make changes and then those changes were tested in
round two. Round one took place from April 11th to April 18th. Round two took place April 19th
to April 25th. These interviews were recorded and compiled into findings reports as the
stakeholder interviews were.

Findings

After Round One:

Positive Comments:
● Dashboard is robust
● Easy to use
● Aesthetically pleasing
● Visualizations are easy to populate
● Visualizations are relevant to dashboard MVP
● Filters are simple to use for even non-technical users

Areas of Concern:
● Desire a way to compare certain metrics to each other

○ Journalists
○ Media Outlets

● Modify the drilldown from Month and Year to just by Year

After round one, we made two major changes to the dashboard. We added a 5th page to the
dashboard entitled “Comparison of Female Voiceshare.” This page gives users the ability to
compare Media Outlets to each other and visualizes the percentage of female voiceshare in

16

selected Media Outlets over time. The second major change was changing the chart type in our
“Over Time” page. The chart was changed to a 100% stacked bar chart in order to make
visualizing trends over time easier for the user.

After Round Two:

Positive Comments:
● Comparison of Female Voiceshare was a great addition

○ Easy to interpret
○ Liked the ability to compare Media Outlets
○ Highlighting female voiceshare in the chart is great for ReThink’s overall mission

● New stacked bar chart made it easier to display trends over time

Areas of Concern:
● Add a sentence on each page of the dashboard as an introduction to what the page’s

function is
● Modify some information on the Summary page to reflect 2022 statistics on Female

Voiceshare

Dashboard Creation

Our dashboard was created utilizing Google Data Studio. Google Data Studio is an online tool
for converting data into customizable informative reports and dashboards. We chose this tool
because of its familiarity within G Suite for the workforce and its easy ability to change sharing,
editing and viewing permissions to keep the sensitive data in the dashboard.

Our dashboard consists of 4 pages. Page 1 is a summary of the dashboard’s purpose and MVP
(Minimum Viable Product). Page 2 is a Totals page that displays the overall total percentages of
male vs. female voiceshare in US News and Media. Page 3 is an Over Time page that displays
female voiceshare over the time period of 2011 to the present. Page 4 is a Comparison of
Female Voiceshare page that allows users to compare Media Outlets to each other and
highlights the percentage of female voiceshare in each Media Outlet.

Each page in our dashboard contains the same four filters to populate visualizations. “Issue
Area” refers to which ReThink issue area the data is populated for. For the purposes of this
capstone project, we are working with the Nuclear Issues area but added the filter in case
ReThink wanted to create subsequent dashboards for other issue areas in the future. There is
a Date filter which allows users to pick the time frame they want to splice the data by. “Media
Name” allows users to filter by certain Media Outlets that are in our database. “Journalist
Name” allows users to filter by particular journalists to see their individual voiceshare within the
Nuclear Issues issue area.

17

Summary Page

Totals Page

18

Over Time Page

Comparison of Female Voiceshare Page

The dashboard’s aesthetics were created based on the ReThink Style Guide. I used their font
choices (Open Sans) and primary company colors (Slate #4e5f72, Wheat #efecb2 and Crimson
#930101) to make the dashboard flush with the rest of ReThink’s materials.

19

Appendix

MongoDB Rules from Documentation

Data Validations
{"prediction": {$in: ["News", "Opinion"]}}
{"gender_corrected": {$in: ['men', 'women', 'unknown']}}
Make Article ID a unique key in results opinion

20

Data Aggregations

Step Description Collection Output Code Notes

1 Gather News
Articles to
Manually
Review

results_opinion news_revie
w

[{$set: {
prediction_final: '$prediction'
}}, {$match: {
manual_review_news: {
$exists: false
},
probability: {
$lte: 0.01
}
}}, {$addFields: {
manual_review_news: true,
manual_review_news_date: Date()
}}, {$limit: 5}, {$out: 'news_review'}]

Currently there is a limit of
5 articles on the exported
file.

2 Save Manual
Edits back to
results_opinion
collection

news_review NA [{$merge: {
into: 'results_opinion',
on: '_id',
whenMatched: 'merge'
}}]

3 Gather quotes
to Manually
Review

results_quote_
with_gender

gender_rev
iew

[{$addFields: {
gender_recode: {
$cond: {
'if': {
$eq: [
'$gender',
'male'
]
},

Warning: some values in
gender probability are
between 0 - 1, others
0-100. You can handle by
adding an if condition
{

$or : [{gender_prob:
{$gte:1,
$lte:20}},{gender_prob:{$

21

then: 'men',
'else': 'unknown'
}
}
}}, {$addFields: {
gender_final: '$gender_recode'
}}, {$match: {
gender_prob: {
$eq: 0
},
manual_review_gender: {
$exists: false
}
}}, {$limit: 5}, {$addFields: {
manual_review_gender: true,
manual_review_gender_date: Date()
}}, {$out: 'gender_review'}]

gte:0.1,$lte:0.9}}]

}

4 Save Manual
edits back to
results_quote_
with_gender
collection

gender_review NA [{
$merge: {

into: 'results_quote_with_gender',
on: '_id',
whenMatched: 'merge'

}
}]

5 Join quotes and
articles, create
final gender and
news fields,
export

results_quote_
with_gender

final_result
s

[{$lookup: {
from: 'results_opinion',
localField: 'article_id',
foreignField: 'Article ID',
as: 'article'
}}, {$set: {
gender_recode: {

Currently limit of 5 set on
collection

22

$cond: {
'if': {
$eq: [
'$gender',
'male'
]
},
then: 'men',
'else': 'unknown'
}
}
}}, {$unwind: {
path: '$article'
}}, {$set: {
'Published Date': '$article.Published Date',
'Journalist Name': '$article.Journalist Name',
Headline: '$article.Headline',
'Media Name': '$article.Media Name',
prediction: '$article.prediction',
prediction_final: '$article.prediction_final',
probability: '$article.probability'
}}, {$project: {
prediction_final: {
$ifNull: [
'$prediction_final',
'$prediction'
]
},
'Published Date': true,
'Journalist Name': true,
'Media Name': true,
id: true,
article_id: true,
gender_final: {

23

$ifNull: [
'$gender_final',
'$gender_recode'
]
},
'Issue Area': 'Nuclear Issues',
month: {
$month: {
$dateFromString: {
dateString: '$Published Date'
}
}
},
year: {
$year: {
$dateFromString: {
dateString: '$Published Date'
}
}
}
}}, {$match: {
prediction_final: 'News'
}}, {$limit: 5}, {$out: 'final results'}]

24

